

PERIODIC TEST-1 2025-26 APPLIED MATHEMATICS MARKING SCHEME

Class: XII B	Time: 1hr
Date: 03.07.25	Max Marks: 25
Admission no:	Roll no:

General Instructions: General Instructions:

- 1. This Question Paper has 4 Sections A, B, C and D.
- 2. Section A has 5 MCQs carrying 1 mark each
- 3. Section B has 2 questions carrying 02 marks each.
- 4. Section C has 2 questions carrying 03 marks each.
- 5. Section D has 2 questions carrying 05 marks each.
- 6. All Questions are compulsory.

SECTION A

1.	If for matrix A, $A^3 = I$, then $A^{-1} =$		1m		
	(a) A	(b) A ²	(c) A^3	(d) None of these	
2.	If A, B are two non-s (a) AB is non singular	ingular matrices of same (b) AB is singular		(d) None of these	1m
3.		nverse does not exist fo		(1) No	1m
	(a) 0	(b) 3	(c) 6	(d) None of these	
4.	1	matrices of same order (b) symmetric matrix		(d) None of these	1m
5.	If A is any m x n matrix and B is a matrix such that AB and BA are both defined, then B is matrix of order		1m		
	(a) n x m	(b) m x m	(c) m x n	(d) None of these	
6.	If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$, sh	$\frac{SECT}{14 I}$ now that A ² – 5A -14 I =	Γ ΙΟΝ Β = 0		2m

Step by Step Solution:

Step 1

Compute $A^2 = A \cdot A$.

Step 2

Multiply matrix A by itself:

$$A^2 = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$

Step 3

Perform the matrix multiplication:

 $A^2 = \left[\begin{array}{cc} (3 \cdot 3 + (-5) \cdot (-4)) & (3 \cdot (-5) + (-5) \cdot 2) \\ (-4 \cdot 3 + 2 \cdot (-4)) & (-4 \cdot (-5) + 2 \cdot 2) \end{array} \right] = \left[\begin{array}{cc} 31 & -25 \\ -20 & 24 \end{array} \right]$

Step 4

Compute 5A and 14I:

$$5A = 5 \cdot \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 15 & -25 \\ -20 & 10 \end{bmatrix}$$
$$14I = 14 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix}$$

Step 5

Combine the results and verify:

$$A^{2} - 5A - 14I = \begin{bmatrix} 31 & -25 \\ -20 & 24 \end{bmatrix} - \begin{bmatrix} 15 & -25 \\ -20 & 10 \end{bmatrix} - \begin{bmatrix} 14 & 0 \\ 0 & 14 \end{bmatrix} = \begin{bmatrix} 31 - 15 - 14 & -25 - (-25) - 0 \\ -20 - (-20) - 0 & 24 - 10 - 14 \end{bmatrix}$$

Final Answer:

27X Determinant of A = 27 x 4 = 108

SECTION C

8. Cost of a pen and a note book are Rs. 12 and Rs. 27 respectively. On A given day shopkeeper P sells five pens and seven notebooks whereas another shopkeeper Q sells 6 pens and four note books find the money received by both the booksellers using matrix algebra.

1m

1m

1m

3m

A:-

Let *A* be the matrix representing the quantities of pens and notebooks sold by each shopkeeper.

 $\boldsymbol{A} = \begin{bmatrix} 5 & 7 \\ 6 & 4 \end{bmatrix}$

The first row represents shopkeeper P, and the second row represents shopkeeper 1m Q.

The first column represents pens, and the second column represents notebooks.

Step 2

Define the cost matrix

Let B be the matrix representing the cost of each item.

$$\boldsymbol{B} = \begin{bmatrix} 12\\27 \end{bmatrix}$$

The first row represents the cost of a pen, and the second row represents the cost of a notebook.

Step 3

Perform matrix multiplication

Multiply matrix A by matrix B to find the total money received by each shopkeeper.

$AB = \begin{bmatrix} 5 & 7 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 12 \\ 27 \end{bmatrix}$	1m
$AB = \begin{bmatrix} (5 \times 12) + (7 \times 27) \\ (6 \times 12) + (4 \times 27) \end{bmatrix}$	
$AB = \begin{bmatrix} 60 + 189\\ 72 + 108 \end{bmatrix}$	
$AB = \begin{bmatrix} 249\\ 180 \end{bmatrix}$	

Solution

9.	Shopkeeper P received Rs. 249 and shopkeeper Q received Rs. 180. Find the values of k if the area of the triangle with vertices $(-2,0)$, $(0,4)$ and $(0,k)$ is 4 square units.	3m
A:-	The absolute value of $\frac{1}{2}(-2)(4-k) = 4$	1m
	k-4=4,-4	1m
	k=8,0	1m
10.	Solve the following system of linear equations by Cramer's rule: 6x + y - 3z - 5 = 0 x + 3y - 2z - 5 = 0	5m

x + 3y - 2z - 3 = 02x+y+4z-8=0

A:-	D1=91 D2=182	1m 1m 1m
	D3=91 x = D1/D = 1,y = 2,z = 1	2m

1m

11. Express the following as the sum of symmetric matrix and a skew symmetric matrix and 5m verify your result.

$$\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$

A:- ¹/₂ (A+A') ¹/₂(A-A') Verification

2m

2m 1m